Eventide

NexlLoc

DX

SERIES

Communications Recording Solutions

Developer APl Manual

Version 2023.5[3364]

P/N: #142367



Copyright 2023, Eventide Communications LLC

P/N: #142367 Version 2023.5[3364]

Every effort has been made to make this guide as complete and accurate as possible, but Eventide Communications LLC.
DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. The information
provided ison an “as-is” basis and is subject to change without notice or obligation. Eventide Communications LLC. has neither
liability nor responsibility to any person or entity with respect to loss or damages arising from the information contained in this
guide.

Notice: This computer program and its documentation are protected by copyright law and international treaties. Any
unauthorized copyingor distribution of this program, its documentation, or any portion thereof may resultin severe civil and
criminal penalties.

The softwareinstalled in accordance with this documentation is copyrighted and licensed by Eventide Communications LLC.
under separate license agreement. The software may only be used pursuant to the terms and conditions of such license
agreement. Any other use may be a violation of law.

Eventide, NexLog, and MediaWorks are registered trademarks of Eventide Communications LLC.
All other trademarks contained herein are the property of their respective owners.

Eventide Communications LLC.

One Alsan Way

Little Ferry, NJ 07643

201-641-1200

www.eventidecommunications.com



Table Of Contents

1. Accessing Media via HTTP(S)
1.1. URL Parameters - General
1.2. URL parameters - RTP specific
1.3. URL Examples
1.3.1. Retrieve media with a matching value for a metadata field
1.3.2. Retrieve media by matching an Eventide CallGuid
1.3.3. Retrieve media by matching an Eventide ID
1.3.4. Retrieve media via complex date and channel based criteria

1.3.5. Retrieve media packaged as RTP

10

10

10

11



2. Associating Metadata via NexLog Metadata Feeds
2.1. Metadata Feeds
2.2. Metadata Commands
2.2.1.5tart
2.2.2.Stop
2.2.3.Break
2.24. Delete
2.2.5. Start (with Metadata)
2.2.6.Stop (with Metadata)
2.2.7.Break_Then_Apply (Metadata)
2.2.8.None
2.2.9.Cache

2.3. Metadata Notes

3. Open Database Connectivity (ODBC)
3.1.Overview
3.2.Installing the ODBC Driver
3.3. Adding a User with Database Access Permissions
3.4. Establishingan ODBC Database Connection
3.5. Setting up a Connection using Microsoft Excel
3.5.1.V_RECORD
3.5.2.V_ALERTHISTORY

3.5.3. V_DAILYSTATISTICS

17

18

18

18

19

19

20

20

21

21

22

22

25

25

26

27

29

30

31

32



4. Accessing Eventide NexLog via SOAP

4.1. Overview

4.2.Setting up Visual Studio 2012
4.3.Source Files

4.4, Expectations

4.5.Cookie Handling
4.6.Logging In

4.7.Retrieving Channel Names

4 8. Retrieving Call Data

4.9. Applying Metadata

4.10. Call Breaks

4.11. Channel Recording Control
4.12.Squashing a Channel

4.13. Supporting Information

5. Interfacing to NexLog’'s REST API
5.1. Authentication
5.1.1. Successful Authentication Response
5.1.2. Failed Authentication Response
5.2.Retrieving Recordings
5.3. Associating Metadata to a Record

5.4. Example Bash Script

25

35

35

36

36

37

37

38

38

39

40

40

41

43

43

44

45

47

48



6. NexLog Generic CAD API
6.1. Overview

6.2. Initial Setup

6.3. Transport Mechanism

6.4. Verification of Data Received

6.5. APl Command Data Format

6.6. Physical Channel Commands
6.7.Non-Physical Channel Commands
6.8. Text Call Commands

6.9. Agent Login/Workstation Tagging Commands

7.Reporting Problems

25

51

52

53

54

54

60

61

62

NEXLOG APPLICATION PROGRAMING
INTERFACES

NexLog Recorders support several methods of accessing media and metadata via a variety of
programmable APls, including HTTP, Metadata Feeds, ODBC, SNMP, CAD, and SOAP. Use of Eventide
APIs may be subject to purchase of add-on licenses per NexLog recorder, please contact
service@eventidecommunications.com to discuss your needs.


mailto:support%40eventidecommunications.com
mailto:support%40eventidecommunications.com
mailto:support%40eventidecommunications.com

1. ACCESSING MEDIAVIAHTTP(S)

1. ACCESSING MEDIA VIAHTTP(S)

NexLog recorders support several methods of accessing media via a programmable API. This section
describes accessing media viaan HTTP interface. Media can be retrieved either as a single record or as a
time range from alist of physical channels. In order to retrieve a single media file, the user must have
information about the call that’s being pulled. This can either be the CallGuid or some other metadata
associated with another system. For example, if a call was annotated with a unique value from an external
source using the Eventide NexLog Metadata Feeds protocol then the media could be retrieved using that
known value.

The HTTP protocol requires Basic web authentication. Credentials can be sent in the URL or in response
to an Authentication request. The recorder can also be configured to support or require SSL (See NexLog
User Manual). The authenticating user must have the appropriate channel/resource permissions to access
the requested recordings. By default, an admin user will have permissions to all channels/resources. See
the NexLog User Manual for information on managing user permissions.

Unless otherwise specified, Media is returned as WAV files containing linear PCM 16-bit signed samples
with a sampling rate of 8000 hertz. If requesting RTP streaming the recommendation is to request 8-bit
Mulaw compression by adding comp=1 to the GET request.

Mediais requested via the URL, <PROTOCOL><ADDRESS>/agent/retrieveMedia.py

The request must contain a valid URL argument set. Note that the URI arguments must be properly
encoded. Examples of valid URLs can be found here

/agent/retrieveMedia.py

1.1. URL Parameters - General

e ¢ - Specify which channel(s) will be used in the command in the form c=<channel1>[,<channel2>,...]

e comp - Audio compression. For RTP streaming this should always be comp=1 for 8-bit G.711
Mulaw. For WAV file download do not specify the compression type to download the default
uncompressed 16-bit linear audio

e ctw - Send audio back as a WAV file. Including ctw=1 will send the HTTP Content-Type header
“audio/x-wav” for the client to play the audio as a WAV. The header “application/octet-stream” will
present the audio as a downloadable file



1.2

1. ACCESSING MEDIAVIAHTTP(S)

¢ d - Enable debug. d=1 enables output to the debug log which is accessible at
<PROTOCOL><ADDRESS>/downloads/debug.txt

¢ k - Use a stored metadata key to find a specific recording. This must be used with the value
command v to specify a unique key-value pair to identify a single recording

e | - Local playback. Play through the front panel speaker of the recorder

¢ m - Mono audio output. m=1 should always be set for RTP streaming

¢ g - Run the database query, but do not send audio

e t1 - The start time in UNIX format for either the dataset window or the playback start time

e tliso - The start time in ISO format for either the dataset window or the playback start time

e t2 - The end time in UNIX format for either the dataset window or the playback end time

¢ t2iso - The end time in ISO format for either the dataset window or the playback end time

¢ v - Use a stored metadata value to find a specific recording. This must be used with the key
command k to specify a unique key-value pair to identify a single recording

e w- Wait for completion before sending to client, 0 (default), 1

URL parameters - RTP specific

¢ buffer - Number of seconds to stream ahead of the current time. For example, buffer=1 will send
one second of RTP data as quickly as possible and then subsequent RTP packets will be sent at the
same speed that they were recorded.

e cached - Start playback from a cached dataset. Playback should start in near real-time. This should
be used after the dataset is created using the prepare and session commands.

¢ clearSession - Stop playback and free the prepared dataset.

e multicast - Send RTP to multicast destination. Used with the rtp command to specify the IP address
and port.

¢ noWait - Run the request in the background and return immediately. Making requests with
noWait=1 does not provide feedback as to the success or failure of the requested action. This can
be used when starting streaming so that a TCP connection does not have to remain open during the
duration of the audio playback.

¢ payload_ms - Specify the frame size of the RTP audio packets. This command should be used for any
receiving party that requires a specific frame size for incoming RTP audio. Sending the command
payload_ms=20 with the streaming request will result in the recorder sending 20 milliseconds of
audio in each RTP packet. The default frame size is 60ms.

e prepare - Prepare a dataset for playback. The preparation may take many seconds to complete
when long periods of time or many channels are requested. Once the dataset is prepared,
subsequent playback requests using the cached dataset should start immediately. A dataset stays
prepared until a clearSession=1 is called for that session or 30 days elapse since the creation of the



1. ACCESSING MEDIAVIAHTTP(S) n

dataset. The session may only have one dataset prepared at a time. A channel, playback start time,
and stop time must be specified in the playback command URL. The channel argument will filter
playback from within the prepared dataset. The start and stop time will be used to start and stop
playback within the prepared dataset.

e rtp - Comma separated list of destination address and port to stream RTP. Defined as
rtp=<address>:<port>[,...]

e session - Used to identify a requesting client such that a dataset (see ‘prepare’) and playback can be
referenced in corresponding calls. The session is defined by the calling process. Sessions can be re-
used. A session should not have more than one stream active at a time. Note, if more than one
stream is active for a session it won't be possible to stop playback. Example, session=cwp1

e speed - Controls the speed of playback. This is a value from -100 to 100 with O being normal speed.
Negative numbers are slower and positive numbers are faster. Example, speed=-50

e stopPlayback - Stops the current playback for the specified session. Example, stopPlayback=1.

1.3. URL Examples

The HTTP GET request must contain a valid URL argument set. Note that the URI arguments must be
properly encoded. Examples of valid URLs are as follows.

1.3.1. Retrieve media with a matching value for a metadata field

Example:

GET /agent/retrieveMedia.py?k=MyCallId&v=111222333 HTTP/1.1
Host: 192.168.1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
Accept: */*

Authorization: Basic RXZlbnRpZGU6MTIzNDU=

Description:

Stream the WAV file for a call record containing the value of 111222333 for the metadata field named
MyCallld. The metadata field may be a field created by the recorder during normal recording operations
(SIP CALLID), or a custom field entered by a 3rd party and populated from an external source. Note that
the specified key column name should be indexed for best performance.



1. ACCESSING MEDIAVIAHTTP(S)

1.3.2. Retrieve media by matching an Eventide CallGuid

Example:

GET /agent/retrieveMedia.py?v=ATG83KsaloJ91NaW HTTP/1.1

Host: 192.168.1.1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: */*
Authorization: Basic RXZ1lbnRpZGU6MTIzNDU=
Description:

Stream the WAV file for the call with CallGuid value ATG83KsaloJ91NaW. The CallGuid must be
determined using a different API (ODBC, SOAP, REST).

1.3.3. Retrieve media by matching an Eventide ID

Example:

GET /agent/retrieveMedia.py?k=1d&v=1 HTTP/1.1

Host: 192.168.1.1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: */*
Authorization: Basic RXZ1lbnRpZGU6MTIzNDU=

Description:

Stream the WAV file that matches ID equal to 1. The recorder has a sequenced ID field. The first call on
the recorder will have id=1. Note that when the recorder runs out of space it will remove the oldest call

ID’s to make room for new ID'’s.

1.3.4. Retrieve media via complex date and channel based criteria

This example shows media retrieval based on a start time and an end time and a list of channels. Times are
specified as either an ISO date time ( t1iso, t2iso ) stringor a UNIX date time ( t1, t2).

Example:



1. ACCESSING MEDIAVIAHTTP(S)

GET /agent/retrieveMedia.py?
c=1,2&t1i50=20121023T040200&t2i50=20121023T050200 HTTP/1.1
Host: 192.168.1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
Accept: */*

Authorization: Basic RXZ1lbnRpZGU6MTIzNDU=

Description:

Create a WAV file with recordings between two dates on physical channels 1 and 2 where the recordings
play in real-time. Silence will be included in the file. Note that only authorized recordings will be
included in the file.

1.3.5. Retrieve media packaged as RTP

By default, the mediais returned to the requester in the resultant payload of the HTTP GET command.
The API can also request that the resulting media is streamed from the recorder to specified addresses.
The stream consists of Real-Time Transport Protocol (RTP) packetized media sent over the UDP protocol.

When RTP mode is specified in the HTTP GET request via the rtp parameter, the RTP audio will be
streamed to the specified addresses, and status text will be returned from the GET request. Each status
text is separated by a newline character. The current playback time is sent out at least one time per
second for a play request that is not backgrounded (without noWait=1). Status messages that begin with
“Success.” Indicate normal operation. Messages that begin with “Warning”” Indicate that the controlling
program might need to handle a problem. Messages that begin with “Error.” Indicate that there is a
problem that might require the attention of the end user. Possible status messages include, but are not
limited to,

Success. Command sent. - This will be seen when noWait=1 is sent. This should only be used on playback
of streaming RTP when the HTTP GET command cannot be held open until the end of the audio playback.

Success. Streaming started. - This text is sent as RTP streaming starts and is followed by update messages
(see “Sent=).

Sent=(seconds from beginning of file) - This update is sent in the form “Sent= 54.375” every 0.125
seconds during the duration of RTP streaming unless the play command was started with noWait=1.

Streaming complete. Sent bytes=(number of bytes sent) - This is the final message during RTP streaming
when the playback reaches the end of the time window specified.



1. ACCESSING MEDIAVIAHTTP(S)

Warning. Failed to find stream. - This indicates that the recorder is not able to find the named session.
Either the named session has not been created, has already been removed with clearSession=1, or the
session has expired 30 days after creation.

Success. Streaming stopped. - This message is returned when RTP streamingis in progress and the
stopPlayback=1 command is sent.

Success. Cache removed. - This message is returned when the clearSession=1 command is sent and the
named session currently exists.

Warning. Cache not found. - This message is returned when the clearSession=1 command is sent and the
named session does not exist or has already been cleared.

Success. Dataset ready. - This message is returned when running a prepare=1 command to set up the
dataset window with start time, stop time, and channels queried from the database and saved in a cache
file for faster access.

Error. Database connection failed for user, (username). - The user credentials passed with the HTTP GET
request in the authentication header must have rights to query the database or this error will be
generated.

Error. Messaging failed for user, (username). - The messaging system internal to the recorder returned an
error for the authenticated user.

Error. Initfailed. - Internal error indicating that the streaming process failed to initialize. Possible reasons
include afailure to connect to the internal media server or database.

Error. Failed to find record for key=(key) value=(value)”. The record may not exist or you may not have
permission to access it. - No records were returned when the database was queried for the given key and
value pair.

Error. Permission to access this recording has been denied. - The user permissions on the recorder did
not allow access to the specified recording with the credentials that were passed in with the
authentication header of the HTTP GET command.

Error. Media type not supported. - This is likely due to attempting to stream a screen capture recording.

Error. Failed to find database cache file. - This error can occur if an attempt is made to play from a session
that has been destroyed or never created.

Error. Media not processed. - No audio was generated for the request. This could indicate invalid time
parameters being sent.



1. ACCESSING MEDIAVIAHTTP(S)

1.3.5.1. Streaming notes

The HTTP GET command must be kept open for the duration of the request unless processing is
backgrounded with noWait=1. If it is closed prematurely then streaming will stop.

The amount of time between the initial request and the start of RTP streaming is not guaranteed. To
achieve synchronization between various media sources it is necessary to process the status command
from the HTTP GET request. Using the prepare=1 and cached=1 commands will make the playback
timing much more predictable.

Format <PROTOCOL><ADDRESS>/agent/retrieveMedia.py?c=<channel numbers>&t1liso=<I1SO
formatted time>&t2iso=<1SO formatted
time>&rtp=<DESTINATION_ADDRESS>:<DESTINATION_PORT >&buffer=<seconds to buffer>

Example: http://192.168.1.1/agent/retrieveMedia.py?
c=1,2&t1is0=20121023T040200&t2is0=20121023T050200&rtp=192.168.1.1:6777 &buffer=0

Description: Start streaming recordings between two dates on physical channels 1 and 2. Silence will be
included in the file to create an accurate representation of events. The recordings will be streamed as
RTPt0192.168.1.1:6777. The data will be sent out in real-time without any buffered audio.

1.3.5.2. Example session to create a dataset and play from it

Initialize the dataset named sess1 and include channels 1-6 from midnight 25 October 2019 to

23:59:59 on 25 October 2019. http://192.168.1.1/agent/retrieveMedia.py?
c=1,2,3,4,5,6&comp=1&m=18&prepare=1&session=sess1&t1iso=20191025TO00000&t2is0=20191025T2359
Success. Dataset ready.

Play channels 1-6 mixed together from times 20:08:00 to 20:08:03.

http:/192.168.1.1/agent/retrieveMedia.py?
buffer=1&cached=1&c=1,2,3,4,5,6 &comp=1&m=1&rtp=192.168.1.110:6777 &session=sess1&t1iso=20191

Success. Streaming started.
Sent=0.25
Sent=0.375

Sent=0.5


http://192.168.1.1/agent/retrieveMedia.py?c=1,2&t1iso=20121023T040200&t2iso=20121023T050200&rtp=192.168.1.1:6777&buffer=0
http://192.168.1.1/agent/retrieveMedia.py?c=1,2&t1iso=20121023T040200&t2iso=20121023T050200&rtp=192.168.1.1:6777&buffer=0
http://192.168.1.1/agent/retrieveMedia.py?c=1,2,3,4,5,6&comp=1&m=1&prepare=1&session=sess1&t1iso=20191025T000000&t2iso=20191025T235959
http://192.168.1.1/agent/retrieveMedia.py?c=1,2,3,4,5,6&comp=1&m=1&prepare=1&session=sess1&t1iso=20191025T000000&t2iso=20191025T235959
http://192.168.1.1/agent/retrieveMedia.py?buffer=1&cached=1&c=1,2,3,4,5,6&comp=1&m=1&rtp=192.168.1.110:6777&session=sess1&t1iso=20191025T200800&t2iso=20191025T200801
http://192.168.1.1/agent/retrieveMedia.py?buffer=1&cached=1&c=1,2,3,4,5,6&comp=1&m=1&rtp=192.168.1.110:6777&session=sess1&t1iso=20191025T200800&t2iso=20191025T200801

1. ACCESSING MEDIAVIAHTTP(S)

Sent=0.625
Sent=0.75
Sent=0.875
Sent=1.0
Sent=1.125
Sent=1.25
Sent=1.375
Sent= 1.5
Sent=1.625
Sent=1.75
Sent=1.875
Sent=2.0
Streaming complete. Sent bytes=16442
Attempting to stop playback of a session that has already stopped.
http://192.168.1.1/agent/retrieveMedia.py?session=sess1&stopPlayback=1
Warning. Failed to find stream.
Play only channel 1 from times 20:08:00 to 20:08:01.

http://192.168.1.1/agent/retrieveMedia.py?
buffer=1&cached=1&c=1&comp=1&m=1&rtp=192.168.1.110:6777&session=sess1&t1is0=20191025T200800§&

Success. Streaming started.
Sent=0.25

Sent=0.375

Sent=0.5

Sent=0.625


http://192.168.1.1/agent/retrieveMedia.py?session=sess1&stopPlayback=1
http://192.168.1.1/agent/retrieveMedia.py?buffer=1&cached=1&c=1&comp=1&m=1&rtp=192.168.1.110:6777&session=sess1&t1iso=20191025T200800&t2iso=20191025T200801
http://192.168.1.1/agent/retrieveMedia.py?buffer=1&cached=1&c=1&comp=1&m=1&rtp=192.168.1.110:6777&session=sess1&t1iso=20191025T200800&t2iso=20191025T200801

1. ACCESSING MEDIAVIAHTTP(S)

Sent=0.75

Sent=0.875

Sent=1.0

Sent=1.125

Sent=1.25

Sent=1.375

Sent= 1.5

Sent=1.625

Sent=1.75

Sent=1.875

Sent=2.0

Sent=2.05525

Streaming complete. Sent bytes=16442
Delete the session.

http://192.168.1.1/agent/retrieveMedia.py?clearSession=1&session=sess1

Success. Cache removed.


http://192.168.1.1/agent/retrieveMedia.py?clearSession=1&session=sess1

This page was intentionally left 99.88% blank.



2. ASSOCIATING METADATAVIANEXLOG METADATA FEEDS

2. ASSOCIATING METADATA VIA NEXLOG
METADATA FEEDS

2.1. Metadata Feeds

NexLog recorders support Metadata Feeds, which are used to send control data to the recorder. The
format of these feeds and the behavior the recorder will take upon receiving commands via these feeds
is programmable in the Recorder’s Configuration Manager under System ->Configuration Files. The
Metadata Feed parser is highly configurable and often used to parse ANI/ALI or SMDR datain a fixed
format. However it can also be configured to parse a simple set of commands received as ASCII text over
aUDP or TCP port. This document will focus on this use of the Metadata Feed Parser.

Metadata feeds are a licensed feature on the recorder and a license key must be programmed into the
recorder to activate the feed. The charge for the license key may also include assistance from an
Eventide Integrations engineer to program the recorder’s metadata feed format and behavior to match
the customer’s needs. Please contact Eventide Sales for information on pricing. A metadata feed can be
configured to take commands from the recorder’s built-in serial ports or an add-on serial port board
available from Eventide, or from a UDP or TCP connection over the recorder’s Ethernet port. Commands
are sent to the recorder using a simple unidirectional ASClI-based protocol, and the format is
configurable. Upon receiving a message via this connection, the recorder can be configured to perform a

»«

command on a given channel; for example, “Start a call if not already recording,” “Stop a call thatisin
progress, “Stop the current call and start a new one, or “Delete the call in progress.” In addition, the
metadata feed can send additional information about the call in-progress to the recorder to be stored in
the recorder database along with the other normally stored information. This information can be viewed
or queried using Eventide’s graphical retrieval clients (MediaWorks, MediaAgent). It can also be accessed
programmatically over ODBC. For example, this can be used to have an external controlling program start

acall and give it a known identifier so that the call can later be retrieved by that identifier.

The examples below describe one simple command set which can be programmed into the Metadata
Feed Parser. Different command formats and semantics can also be programmed for cases where the
remote software sending commands to the recorder cannot be modified. For new development or
integrations, these standard commands normally suffice for most needs. From this point forward the
information in this section refers only to this single possible command set configuration.

Commands will be sent to the recorder from remote software by sending a UDP/TCP command packet to
the recorder on port 5000. The data is sent as an ASCI| text string starting with the string ‘<<’ and ending



2. ASSOCIATING METADATAVIANEXLOG METADATA FEEDS

with the string ‘> >’. Individual fields are separated with the string “::. A newline (\n) may be sent between
commands and will be ignored. Commands are executed by the recorder as they arrive.

2.2. Metadata Commands

2.2.1. Start

Start recording on a given physical recorder channel.

Format:

<<CHANNEL NUMBER: :START>>
Example:

<<61: :START>>

Description:

When this command is received, the recorder will start recording on channel 61. If acall is already in
progress on 61, nothing will be changed, and the current call in progress will continue to record.

2.2.2.Stop

Stop recording on a given physical recorder channel.

Format:

<<CHANNEL NUMBER: :STOP>>
Example:

<<54::STOP>>

Description:



2. ASSOCIATING METADATAVIANEXLOG METADATA FEEDS

When this command is received, the recorder will stop recording on channel 54. If no call is in progress
on 54, nothing will be changed.

2.2.3. Break

Perform a call break on a physical recorder channel.

Format:

<<CHANNEL NUMBER: :BREAK>>

Example:

<<36: :BREAK>>

Description:

When this command is received, if no call is in progress on channel 36, the recorder will begin recording
anew call. If acall is already in progress on channel 36, that call will be terminated and a new call started.

2.2.4. Delete

Delete the current call in progress or previous call on a physical recorder channel.

Format:

<<CHANNEL NUMBER: :DELETE>>
Example:

<<24::DELETE>>

Description:

When this command is received, if no call is in progress on channel 24, the previous call on the channel
will be deleted. If acall isin progress, it will continue to record until it is stopped, at which point it will be



2. ASSOCIATING METADATAVIANEXLOG METADATA FEEDS

purged from the recorder’s call database within the next few minutes. Note that unless this APl command
is specifically requested by the customer, it will not be programmed in or available on the recorder.

2.2.5. Start (with Metadata)

Start recording on a given recorder channel and apply metadata to it.

Format:

<<CHANNEL NUMBER: :START: :METADATA KEY::METADATA VALUE>>

Example:

<<16::START::CUSTOMER NAME::Eventide, Inc.>>

Description:

When this command is received, if no call is in progress on channel 16, a new call is started, if acall is
already in progress, it is allowed to continue. In addition, regardless of whether a new call is started or
not, the value sent in “Metadata Value” will be written to the database field “Metadata Key” in the
database record for the call. The Metadata field specified by “Metadata Key” must have already been
created in the Recorder’s Configuration Manager under Recording -> Custom Fields, and be of a data type
compatible with the value sent as “Metadata Value”. The Text sent as the Metadata Key must match
exactly the name of one of the configured Custom Fields.

2.2.6. Stop (with Metadata)

Apply metadata to a call on a given channel and stop it.

Format:

<<CHANNEL NUMBER: :STOP::METADATA KEY::METADATA VALUE>>

Example:



2. ASSOCIATING METADATAVIANEXLOG METADATA FEEDS

<<8::STOP: :CUSTOMER NAME: :Eventide, Inc.>>

Description:

If no call isin progress on channel 8, the command is ignored; otherwise, the metadata is applied and the
call stopped. See Start (with Metadata) for more info about the Metadata Key and Value fields.

2.2.7. Break_Then_Apply (Metadata)

Break the current call, start a new one, and apply metadatato it.

Format:
<<CHANNEL NUMBER: :BREAK THEN APPLY::METADATA KEY::METADATA VALUE>>
Example:

<<125: :BREAK_THEN_ APPLY::CUSTOMER NAME::Eventide, Inc.>>

Description:

If acallisin progress on the channel it will be stopped. Regardless of whether a call was in progress or
not, a new call will then be started and the metadata included in the command string will be applied to it.

2.2.8. None

Apply metadata to the current/last call and perform no additional actions.

Format:
<<CHANNEL NUMBER: :NONE: :METADATA KEY::METADATA VALUE>>
Example:

<<34::NONE: :Foo: :Bar>>



2. ASSOCIATING METADATAVIANEXLOG METADATA FEEDS

Description:

If no call is in progress, the metadatais applied to the most recent call that took place on channel 34. If no
call has taken place on channel 34 since recorder start-up, the metadatais ignored. If acall is currently in
progress, the metadata is applied to that call. No call stops or starts take place. This command can be sent

multiple times with different Key/value pairs to set multiple custom fields.

2.2.9. Cache

Apply Metadata to the current/next call and perform no additional action.

Format:

<<CHANNEL NUMBER: :CACHE: :METADATA KEY::METADATA VALUE>>

Example:

<<45::CACHE: :Foo: :Bar>>

Description:

If acall is currently in progress on the channel, the metadata in the command stringis applied to it. If no
call is currently in progress, the metadata is cached. The next call to start on this channel will get the
metadata applied to it. If no more calls start on this channel before the recorder is powered off, the
metadata will be discarded. In addition, if another CACHE command string is received by the recorder
for this channel before call start, the old cached metadata will be discarded.

2.3. Metadata Notes

1. In addition to calls being started or stopped by the external program, the recorder channels will still
respond to start/stop events from other configured methods. For example, it is acceptable to
configure a channel to have calls starting and stopping due to VOX call detection and also provide
additional start/stop events. Normally however, the recorder channels to be externally controlled
will be configured to ignore all other call start sources and to obey only external sources, or they
will be configured to use their normal internal methods for start/stop control, and the metadata
feed will only be used to apply metadata to the calls. In some applications though, the hybrid



2. ASSOCIATING METADATAVIANEXLOG METADATA FEEDS

approach is desirable and is available. In other systems, only CACHE or NONE events are sent to
apply metadata to calls started and stopped via the standard VOX or signaling interfaces.

2. All command strings above are available with analog call sources. There is one caveat for digital call
sources (T1/E1, ISDNBRI, PBX, etc.). Unlike an analog source, which always has data available to
record (though it may simply be silence), on digital sources no data is available to record if no call is
being sent along the signal path. Therefore, forcing a call start on a digital channel may not perform
as expected if no corresponding signal is available to record. To work around this issue, the external
application should only send a call start for a channel if it knows audio data is currently being sent
on that channel. In addition, for these digital channels, it is preferable to send START events without
metadata and then send the metadata viaa NONE or CACHED event a few seconds later. This is
because the recorder cannot force an immediate call start to make sure there is a call to which the
metadata should be applied. This method allows the recorder to request a call start and wait for the
data to begin to flow, and then apply the metadata when data is available. With analog sources, this
is not necessary because the datais always “flowing” into the system regardless of the call states.
With Digital sources, typically only the NONE, CACHE and DELETE commands are used and call
control is based on presence or absence of data.

3. The command formats above are the defaults supplied by Eventide, however the formats can be
altered and some of the behavior of the commands themselves can be altered.



This page was intentionally left 99.88% blank.



3. OPEN DATABASE CONNECTIVITY (ODBC)

3. OPEN DATABASE CONNECTIVITY (ODBC)

3.1. Overview

This document describes how to install the PostgreSQL ODBC driver, connect to the PostgreSQL
database residing in a NexLog recording system, and generate a customized report of the data contained
therein.

You'll learn how to create a user with permissions to the Eventide database schema, select individual
tables for inclusion in the report, and how to design a report using Microsoft Office Excel and Access.

Note: This exercise requires that you have Microsoft Office 2010 or higher and you are running
Microsoft Windows 7 (32-bit or 64-bit). Your recorder must be configured correctly in the network. This
exercise requires administrator access to create or change user rights. It also involves working with
incidents and data from an Eventide NexLog recorder; make sure that you have at least one incident for
testing. Use Eventide MediaWorks Plus when working with incidents.

At the end of this document there is alist of all accessible PostgreSQL tables and views with descriptions
of their fields.

3.2. Installing the ODBC Driver

ODBC is an acronym for Open Database Connectivity, a standard, widely adopted method for accessing
databases. The goal of ODBC is to make it possible to access any data from any application, regardless of
which database management system (DBMS) is handling the data. ODBC manages this by inserting a
middle layer, called a database driver, between an application and the DBMS. The purpose of this layer is
to translate the application’s data queries into commands that the DBMS can accurately interpret.

The Eventide NexLog series of call logging recorders employs PostgreSQL, an open system, Linux-based
DBMS. In order for you to access the database from Microsoft Windows, you must first install the
PostgreSQL ODBC driver.

To do this, simply download, and install the version that works with your operating system from
PostgreSQL. The files can be located from the source at:

http://www.postgresql.org/ftp/odbc/versions/msi/


http://www.postgresql.org/ftp/odbc/versions/msi/

3. OPEN DATABASE CONNECTIVITY (ODBC)

Make sure that you install the 32- or 64-bit version based on which version of Windows 7 you are using.
After the installation is complete you will need to create the connection to the recorder. First though, you
must create a user that has the necessary rights to connect.

3.3. Adding a User with Database Access Permissions

You must have administrator rights to create users and change permissions in the recorder. The following
steps can be done using the front panel of the recorder or using the Configuration Manager portal of the
recorder.

e Log on to the recorder with administrator rights.
e Under Setup locate Users and Security.
e Click on Users.

By default, the Eventide user has full administrative rights, and although you may use this account to

establish the connection it is recommended to use a restricted account.

e Click on Add User provide a name, and a password. Note: usernames and passwords are case
sensitive.

e The user must be part of the Researchers permission group.

e User information can be left as defaults, and the account must be enabled. If there are password
expiration policies, set this password to never expire or make a note of the frequency for changing
the passwords in the ODBC configuration page.

e At this time you can exit out of the Setup menu.

' ACCOUNT
USERNAME ’ADMIN ‘GROUPS ’STATUS ‘
Eventide Yes All Enabled

odbc No[w Researchers Enabled

Fig. 3.1 User Security Page on the Front Panel



3. OPEN DATABASE CONNECTIVITY (ODBC)

3.4. Establishing an ODBC Database Connection

After the installation of the PostgreSQL ODBC driver, you must create a connection within Windows.

In this document we will use Windows 7 64-bit, but the configurations are identical for the 32-bit
version.

e Open Control Panel, locate the Administrative Tools

e Open Data Sources (OBDC); you may also use the RUN command: odbcad32.exe
¢ In the ODBC Data Source Administrator windows select Add.

e There are two versions ANSI, or Unicode. For this test we will use Unicode.

e Select PostgreSQL Unicode(x64) from the list, then Finish.

E9 ODBC Data Source Administrator x|

User DSN | System DSN | Fle DSN | Drivers | Tracing | Connection Pocing | About |

LUser Data Sources:
Name [ Driver
dBASE Fles Microsoft dBase Driver ".dbf)
ES_Data SQL Server
Excel Flles Microsoft Excel Driver ("ads, “dsx, “dsm,
MS Access Database  Microsoft Access Driver ("mdb, *accodb)
TeaTock SaL seve X
Visio Database Samples Microsolt Access Driver ("me
Select a daver for which you want to set up a data source.
< Nome [val
p [E53) Mcrosoht Access Text Drver ("5, " csv) 1
e, A ODEC User data source stores information - 4‘L Microsch Excel Driver ("xds, “xsx, “xlem, “xsb) 1
;] the indicated data provider. A User data sox -l PostgreSQL ANSIX64) s
and can only be used on the cument maching PostgreSQL Unicode(x64 g
SQL Native Clent 2
SQL Server 6
LI —— SQL Server Native Clert 10.0 Z
SQL Server Native Glert 11.0 2
K IR B

o [ o |

Fig. 3.2 Add PostgreSQL Connector




3. OPEN DATABASE CONNECTIVITY (ODBC)

]
User DSN |SystemDSN| Fie DSN | Drivers | Tracing | Connection Pooling | About |
User Data Sources:

ES_Data SQL Server
Excel Files Microsoft Excel Driver (*xds, *xdsx, *ds Bemove I
MS Access Database  Microsoft Access Driver ("mdb, *.accd Corf I
PostgreSQL30 Postgre SQL ANSI{x64)
PostgreSQL35W Postgre SQL Unicode(x64)
TestTrack SQL Server
Visio Database Samples Microsoft Access Driver ("mdb, “.accd

< |

and can only be used on the curent

An ODBC User data source stores information about how to connect to
m: the indicated data provider. Al.berddamilody\nd:letoyw

ok | cance |

£oply I Help I

Fig. 3.3 ODBC Window

Select PostgreSQL Unicode, then configure using the following settings: (see Fig. 3.4)

e Datasource: meaningful name for this connection

¢ Database: |j (case sensitive)

¢ SSL Mode: Disable

e Server: |P address of the recorder

e Port: 5432

¢ User Name: From Adding Database Access Permissions
¢ Password: From Adding Database Access Permissions

PostgreSQL Unicode ODBC Driver (psqlODBC) Setup 5'
Data Source IEvenlide Description [Nexlog Recorder
Database [j 551 Mode | disable [~
Server |1 92.168.80.151 Port |5432

User Name Iodbc Password

Options
’V Datasoutcel Global I

Test

Cancel

i

Fig. 3.4 ODBC Configuration



3. OPEN DATABASE CONNECTIVITY (ODBC)

After completing the steps above test the connection. The connection test should show successful. Then

press OK, save the connection, and close all other windows.

3.5. Setting up a Connection using Microsoft Excel

The following procedures may help to connect other software products that support OBDC data

querying.

Launch Microsoft Excel, this document uses version 2010. Open a new book, from the ribbon menu

select Data, and from the ribbon select from Other Sources.

Other Sources will provide a drop down you have two options. Data Connection Wizard, or Microsoft

Query. This example will take a look at the Microsoft Query Wizard.

You may add tables to the report by means of selecting them from the list of available tables. In the

example below we took the following tables:

‘v_incident, ‘callincidentgrouping, ‘v_call, ‘v_record’

The unique identifier for the tables ‘callincidentgrouping, ‘v_call’ ‘v_record’ is the ‘callguid.

== Microsoft Query

File Edt View Format Table Criteria Records Window Help

EIEERE v=[=] 2R (L]0

* u Query from Eventide

v_incident

alincident

incidentcreationtime
incidentdescription
incidentguad
incidentmodificationtime
incidentname
incidentowner
sharedincident

calladditiontime
callguid
callincidentdesciif

Fig. 3.5 Excel Query Editor

v_record

calldrection
callerguid
callguid
channelid
channelname
datablocks
datastatus
datatype
duration
duration_text
extension

id

isarchived
issuppressed
lostdata
samplerate

/

v_call

calldiection
callergud
callguid
channeld
channeiname
datablocks
datastatus
datatype
duration
duration_text
exdension

id

isarchived
ssuppressed
lostdata
samplerate
save
sourceid
starttme
suppressedtime
unsuppressedtime




3. OPEN DATABASE CONNECTIVITY (ODBC)

3.5.1. V_.RECORD

This view provides detail information of all call records on the system.

Column Name

Field Type

Width Description

callguid
channelid

datatype

calldirection

callerguid

datastatus

isarchived
issuppressed
save

extension

character 16
integer

smallint

character 1

character 16

character 1

boolean
boolean
boolean
integer

timestamp

starttime_timestamp without time

zone

timestamp

stoptime_timestamp  without time

duration
duration_text

lostdata

zone
integer
interval

integer

Compression Type

| for Incoming, O for Outgoing, U for
Unknown.

Custom.

C for Complete, P for In Progress, R for
Removed, | for Partial Removed.

Custom.
Was the call audio for this call Suppressed?
Is this call marked Protected.

Custom.

Duration in seconds.
Interval datatype for duration.

Custom.



3. OPEN DATABASE CONNECTIVITY (ODBC)

Column Name Field Type Width Description

. Mediasize in kilobytes; one block is 1k of
datablocks integer

data.
samplerate integer Sample rate of recording.
suppresedtime integer
unsuppressedtime integer
sourceid integer
channelname text
id integer Database record ID.
callguid character 16 Custo.m; will 'be blank if there is no metadata
associated with the call.
dtmf text DTMF
calling_party text
caller_id text Caller ID.
annotations text Stored in XML format.

V_Record will also include any Custom Fields, such as Location, Speech, Agent_ID, User_ID, etc., that are
configured on the recorder.

3.5.2. V_ALERTHISTORY

This view provides detail information of all system alerts.

Column Name Field Type Width Description
alertcode Integer Numerical value that represents the alert code.

eventtime Timestamp The time the alert occurred



3. OPEN DATABASE CONNECTIVITY (ODBC)

Column Name Field Type

serial Serial

alertguid Character 16
displaytext Character 512
isacknowledged Integer
timeacknowledged Integer

acknowledginguser Character 63

acknowledgingprocess Character 63

isresolved Integer
resolveddisplaytext Character 512
timeresolved Timestamp

resolvinguser Character 63

resolvingprocess Character 63
triggeringprocessname Character 63

triggeringusername Character 63

3.5.3. V_DAILYSTATISTICS

Width Description

Auto-incrementing field

A guide used by the system to track alerts
The text message that displays in the alert
Has this alert been acknowledge

The time the alert was acknowledge

The user that acknowledge the alert

The process used to acknowledge the alert

Has this alert been resolved. Only used if the alert

requires resolution

Message that is displayed once the alert is
resolved

Time the alert was resolved

User that resolved the alert

The process used to resolve the alert
The process that triggered the alert

The user that triggered the alert

This view provides detail information of daily system statistics.

Column Name Field Type
Id Integer

datetime Timestamp

Width Description

Auto-incrementing field

Date and time without time zone



3. OPEN DATABASE CONNECTIVITY (ODBC)

Column Name Field Type
callcount Integer
callcountsincelast Integer
displaytext Character

Width Description

512

Record count from date time
Difference between the call count and the

The text message that displays in the alert



This page was intentionally left 99.88% blank.



4. ACCESSING EVENTIDE NEXLOG VIASOAP

4. ACCESSING EVENTIDE NEXLOG VIA SOAP

4.1. Overview

This document requires you have the SOAP API Example Application (Part Number: 141250-01) that
demonstrates access to Eventide’'s NexLog server via Simple Object Access Protocol (SOAP) usinga.NET
client. If you do not, contact service@eventidecommunications.com to request this application.

The application demonstrates the following features:

e Logging into NexLog

e Retrieving channel names

e Retrieving channel information
e Retrieving call history

¢ Retrieving call metadata

e Starting and stopping recording
e Squashing arecording

e Setting channel metadata

4.2. Setting up Visual Studio 2012

The Demo was built as a WPF (Windows Presentation Foundation) application using Visual Studio
Professional 2012. The only additional download required was the Extended WPF Tookit which provides
the DateTimePicker control. This is available as described in the Supporting Information section, or may
be downloaded via the NuGet Package Manager.

The WSDL is loaded into the project as a Service Reference. To create a Service Reference for your own
project you can use the WSDL link in the Supporting Information section. It can be loaded into V52012
via Project|Add Service Reference, and enter the link into the Address field.

The Demo is written in C#.

4.3. Source Files

MainWindow.xaml.cs


mailto:service%40eventidecommunications.com
mailto:service%40eventidecommunications.com
mailto:service%40eventidecommunications.com

4. ACCESSING EVENTIDE NEXLOG VIASOAP

This module is created by VS when the project is created. It sets up the Ul and is the coordinating
code for the application.

Login.cs

This module manages the login dialog that appears when you start the app. It creates the client
object which represents the WSDL document as a service reference.

SetMetadata.xaml.cs
This module manages the ‘Set Channel Metadata’ window.
NexLog.cs

This module encapsulates the service reference and is the only direct user of the reference. It
provides methods for use by the other classes.

CookieBehavior.cs

This module encapsulates the manual re-injection of the session cookie into each outgoing HTTP
packet. It is reusable and may be considered opaque after its initialization.

4.4, Expectations

The Expect100Continue setting configures how the HTTP session is handled. For details on this see:
http://msdn.microsoft.com/en-us/library/system.net.servicepointmanager.expect100continue.aspx

The setting must be false to achieve compatibility with NexLog.

// Code Snippet
System.Net.ServicePointManager.Expect1l00Continue = false;
// disable expectations

4.5. Cookie Handling

The NexLog requires a session cookie to maintain the integrity of the session. By default, WPF
applications do not handle cookie management automatically; the cookie has to be inserted into the
outgoing HTTP. This functionality is encapsulated in class CookieBehavior. If this module is not installed
then all SOAP operations after the initial login will fail.


http://msdn.microsoft.com/en-us/library/system.net.servicepointmanager.expect100continue.aspx
http://msdn.microsoft.com/en-us/library/system.net.servicepointmanager.expect100continue.aspx

4. ACCESSING EVENTIDE NEXLOG VIASOAP

// Code Snippet:
// See the CookieBehavior.cs module for details
_client.Endpoint.EndpointBehaviors.Add(new CookieBehavior());

4.6. Logging In

The code snippet shows the login method and the returned objects sessionKey and passwordExpire. Both
of these are both unused as the CookieBehavior class handles the session key.

// Code Snippet
_client.login(txtUsername.Text, // text from controls
txtPassword.Text,
txtIPAddress.Text,
out sessionKey, // unused
out passwordExpire); // unused

4.7.Retrieving Channel Names

The getAllChannel() call returns an array of ChannelEntity objects, each describing a recording channel.

// Code Snippet

// Retrieve the channel names from NexLog

//

ServiceReference2.ChannelEntity[] channels = client.getAllChannel();
foreach (ServiceReference2.ChannelEntity channel in channels)

{

_channelEntity[channel.name] = channel;

}

See the ChannelEntity object definition for a full description of the channel. A channel may be analog (ie,
accepting an interface with POTS), or digital. This characteristic defines what the channel can and cannot
do, and this will be outlined later in this document.



4. ACCESSING EVENTIDE NEXLOG VIASOAP

NexLog systems with a large number of channels (>32) may not be queried in this way because the
returned data can exceed the maximum 64K message size specified by WPF. For details on this,
check the following link: http://blogs.msdn.com/b/drnick/archive/2006/03/10/547568.aspx

You can adjust the MaxBufferSize parameter or use the following code. Be aware, though, that the
getChannelCount and getChannelBylIndex calls are not implemented in all versions of NexLog.

// Code snippet

for (int ii = 1; ii <= client.getChannelCount(); ii++)
{

ServiceReference2.ChannelEntity channel =
_client.getChannelByIndex(ii);
_channelEntity[channel.name] = channel;

}

4.8. Retrieving Call Data

A call is encapsulated by the MediaRecordEntity object. When a new channel is selected in the
application it submits a query to NexLog to retrieve some of the most recent calls for that channel. The
MediaRecordEntity includes a GUID which uniquely identifies the call. See
NexLog::getRecordsForChannelName for details on how to build a query filter.

4.9. Applying Metadata

NexLog provides the ability to associate user-customized information with each call. The metadata field
names and types are entered via the front panel or via Mediaworks Express, and the values of these fields
(also called “custom fields”) are available in the MediaRecordEntity object (see Retrieving Call Data).


http://blogs.msdn.com/b/drnick/archive/2006/03/10/547568.aspx

4. ACCESSING EVENTIDE NEXLOG VIA SOAP

4.10. Call Breaks

A “call break” can occur when metadata is received by NexLog during a recording. Depending on the
metadata “action” the call may be broken into one or more recordings on the NexLog, each recording
being associated with its unique metadata. The .NET application shows how metadata can be applied to a
recording and when to use a call break.

Three actions are specified, and the NexLog will choose on of them depending on the channel’s type and
whether or not a recordingis in progress.

The metadata actions are:

Action Description

NONE apply the metadata to the current recording

apply the metadata to the current recording, stop the recording and
APPLY_BREAK . .
immediately start another

top the current recording, immediately start a new recording and apply the
BREAK_APPLY .
metadatatoit

CACHE cache this metadata and apply it the next time a call starts
DELETE schedule the current recording for deletion

Start a new call and apply the metadata. This generally applies to analog audio

START
sources only, although digital sources can be configured to accept this action

STOP apply the metadata and stop recording

If arecordingis in progress then the accepted actions are NONE, STOP, APPLY_BREAK, BREAK_APPLY
and DELETE.

If arecordingis notin progress then the accepted actions are NONE, START, CACHE and DELETE.

// code snippet

return client.setChannelMetadata(channel,
callHasMetadataStartAction,
noCallInProgressAction,



4. ACCESSING EVENTIDE NEXLOG VIASOAP

callInProgressAction,
metadata);

4.11. Channel Recording Control

A NexLog may be fitted with an analog telephone interface. This kind of interface can be set to record at
any time, even if a call is not in progress. Digital channels (E1/T 1, SIP Trunk etc) can also be set to actin
this way, although this usage is not common and the facility is not provided by the .NET application.
Recording can be initiated with the “Record” button.

Either type of channel can be set to stop recording at any time; this action is invoked with the “Stop”
button.

// code snippet

// Start and stop recording with a 2 second timeout
//

public ServiceReference2.RecordingStatus
startRecording(int channelNumber)

{
}

public ServiceReference2.RecordingStatus
stopRecording(int channelNumber)

return client.startRecording(channelNumber, 2);

{
}

return client.stopRecording(channelNumber, 2);

4.12.Squashing a Channel

When a channel is put into “squashed” state, it is actively recording but the recording information is
replaced with silence. This might be used when accepting credit card information or other confidential
information.

// snippet

if (true == squash)

{
_client.recordDisable(channelNumber);

}



4. ACCESSING EVENTIDE NEXLOG VIASOAP

else

{
}

_client.recordEnable(channelNumber);

4.13. Supporting Information

Extended WPF Tookit is at http://nuget.org/packages/Extended Wpf.Toolkit

Your NexLog WSDL is at http://YourLogger/soap.fcgi?wsdl


http://nuget.org/packages/Extended.Wpf.Toolkit
http://YourLogger/soap.fcgi?wsdl

This page was intentionally left 99.88% blank.



5. INTERFACING TO NEXLOG'SREST API

5.INTERFACING TO NEXLOG'S REST API

5.1. Authentication

Authentication (username and password) information is passed via POST form data

/client/apps/login/

Form Parameters

e location - localhost
e username - user’s username
e password - user’s password

Example:

POST /client/apps/login/ HTTP/1.1

Host: 192.168.1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
X-Requested-With: XMLHttpRequest

Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Accept: */*

location=localhost&username=Eventide&password=12345

5.1.1. Successful Authentication Response

The JSON object contains ‘sessionKey’ which indicates a successful login. The session key does not need
to be saved but the cookie information in the Set-Cookie HTTP header does need to be a part of future
communications.

Example:

HTTP/1.1 200 OK
Cache-Control: no-store, no-cache, must-revalidate
Set-Cookie: eventide soap session=ZP1z1RUwExHc15Wc; Path=/



5. INTERFACING TO NEXLOG'SREST API

Set-Cookie: eventide soap user=Eventide; Path=/
Content-type: text/html

"username":"Eventide",
"license":{
"MP3":false,
"SpeechToText": false,
"hasATCMode": false,
"hasNAB":true,
"hasQuarantine":false,
"hasRapidS0S*":false,
"packagedIncidentExport": false
b
"location":"localhost",
"loginRc":-1,
"password expire days":-1,
"result":"success",
"security":{
"admin":"true",
"system security":null,
"user _groups":{}
b
"sessionkey":"10iw2LJyvggt7Sr8",
"tos":""

5.1.2. Failed Authentication Response

A failed login is indicated by populated ‘error’ and ‘errorDetail’ fields

Example:

HTTP/1.1 200 OK
Cache-Control: no-store, no-cache, must-revalidate
Content-type: text/html

"loginRc":-1,
"password expire days":-1,



5. INTERFACING TO NEXLOG'SREST API

"location":"localhost",
"errorDetail":"Authentication failure",
"error":"AUTH FAULT"

If the session has timed out or an operation is being performed when the login has not been established
then the JSON document will look as follows

Example:

HTTP/1.1 200 OK
Cache-Control: no-store, no-cache, must-revalidate
Content-type: text/html

{
"1isSS0":"0",
"errorDetail”:"Not logged in",
"error":"NO SESSION FAULT"

}

5.2. Retrieving Recordings

This method queries the system for records.

/apps/rest/call.json

Query Parameters

e type (string) - stackable return type ( json, metadata, array)

e timezone (string) - timezone for the start and end time, default UTC

e columns (string) - comma separated list of data to return for each record, also uses call.X
parameters below

e call.channelid (int) - channel number to return records for

e call.datastatus (char) - current state of the record ()"'c’", p)

e call.callguid (string) - unique id of the record

e call.calldirection (string) - inbound or outbound direction (i, o)

e call.duration (int) - length or the record in seconds



5. INTERFACING TO NEXLOG'SREST API

e call.starttime_timestamp (timestamp) - record’s start time

e call.stoptime_timestamp (timestamp) - record’s end time

e call.sourceid (int) - serial number of the record’s originating system
e call.isarchived (boolean) - if the record has been sent to an archive

Example Request:

The following example retrieves the callguid for the call in progress (call.datastatus=p) on channel
1 (call.channelid)

GET /client/apps/rest/call.json?
type=json,metadata,array&timezone=America/
New_York&columns=call.channelname, call.callguid&call.channelid=1
&call.datastatus=p HTTP/1.1

Host: 192.168.1.1

Connection: keep-alive

Cache-Control: no-cache

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
Accept: */*

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Cookie: eventide soap user=Eventide;

eventide soap user 192.168.1.1=Eventide;

eventide soap session=CxaxD4SjxgESH447];

eventide soap session 192.168.1.1=6xfRiDZmXz43fzN2

Example Response:

The returned JSON document returns the callguid in the ‘rows’ parameter

HTTP/1.1 200 OK
Content-Type: application/json

"count":1,
"rows":[
[
"Channel One",
"OXvGC4DKwSeOQv1im"

1,



5. INTERFACING TO NEXLOG’SREST API

"timestamp":1010181746,

"rownumber":0,

"offset":0,

"total":1,

"columns": [
"channelname",
"callguid"

Custom fields that are not prefixed by “call.” or those that show up in the custom fields page in

webconfig (not part of the call table) are requred to be uppercase when included in the query.

5.3. Associating Metadata to a Record

/client/apps/soap/

Form Parameters

e location - localhost **

¢ method - action to take against record setCallMetadata **
¢ channelid - channel number that the record is from

e callguid - unique record id to set metadata for **

e keys - array of metadata fieldnames to set **

e values - array of values corresponding to the keys **

** required
Example Request:
The following example sets the user id custom field associated with call GUID

HfEOYV13R03rVVwy . The field value isset to Taylor Smith

POST /client/apps/soap/ HTTP/1.1
Host: 192.168.1.1



5. INTERFACING TO NEXLOG'SREST API

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
X-Requested-With: XMLHttpRequest

Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Accept: */*

location=1localhost&method=setCallMetadata&callguid=HfEQYV13R03rV
Vwv&keys=["user id"]&values=["Taylor%s20Smith"]

Example Response:

If the operation is successful the server will return

HTTP/1.1 200 OK
Content-type: application/json

"result": true

5.4. Example Bash Script

This example script queries the system for arecording in progress on channel 1. It then uses the
callguid tosetthe User ID fieldto Taylor Smith for thatrecord.

#!/bin/bash
NLHOST=192.168.22.98
USERNAME=Eventide
PASSWORD=12345
CHANNELID=1
LOGFILE=1logfile.txt
COOKIES=cookies.txt

# Authenticate
wget -a ${LOGFILE} --save-cookies ${COOKIES} --keep-session-cookies --

post-data location=localhost\&username=${USERNAME}\&password=${PASSWORD} -

0 auth.json http://${NLHOST}/client/apps/login/

# Get the guid of the call currently in progress
wget -a ${LOGFILE} --load-cookies ${COOKIES} --keep-session-cookies -0
query.json "http://${NLHOST}/client/apps/rest/call.json?



5. INTERFACING TO NEXLOG'SREST API

type=json%2Cmetadata%s2Carray&timezone=America%2FNew York&columns=call.cal
lguid&call.channelid=${CHANNELID}&call.datastatus=p"

# extract call guid from JSON
queryraw="cat query.json’
CALLGUID="echo "{"${queryraw#*{} | jq -r '.rows[O][]"'"

# use channelid and callguid to set user id

wget -a ${LOGFILE} --load-cookies ${COOKIES} --keep-session-cookies --
post-data location=localhost\&method=setCallMetadata\&channelid=${CHANNEL
ID}I\&callguid=${CALLGUID}\&keys="["user id"]'\&values='["Taylor%20Smith"]"
-0 setMetadata.json http://${NLHOST}/client/apps/soap/



This page was intentionally left 99.88% blank.



6. NEXLOG GENERIC CAD API

6. NEXLOG GENERIC CAD API

6.1. Overview

The NexLog Generic CAD API provides a simple mechanism to allow CAD systems to inject data about
call records into the NexLog database, where they are stored, archived, retrieved, and displayed along
with the call records and the native metadata stored with the call. The Generic CAD API allows arbitrary
additional metadata fields including call ids and incident id’s to be provided from the CAD system to the
recorder. Users of the NexLog system can then choose to display and/or search based on these metadata
values associated with the call records.

The NexLog Recording system has a facility for ‘Metadata Feeds. A Metadata Feed is a configurable TCP,
UDP, or Serial Input, configured to expect data in a given data format. The Metadata Feed framework
allows the format of a given metadata feed to be programmatically defined in a configuration file on the
recorder and can support a myriad of different input formats. The Generic CAD APl isimplemented as a
specific realization of this more generalized feature. To use the NexLog Generic CAD API on a given
recorder, a License for ‘Generic CAD API’ must be purchased from Eventide for the specific recorder. By
purchasing this license, the end user will receive a license key to activate the Metadata Feeds recorder
feature, the specific configuration file to load on the recorder to support the Generic CAD API data
format, and the legal permission to utilize the feature on the recorder. The Generic CAD API licensed
feature must be purchased and installed on a given recorder prior to using the Generic CAD API.

6.2. Initial Setup

To enable and configure the Generic CAD API on a given recorder, first log into the recorder’s
Configuration Manager via a web browser as a user account with administrative access to the recorder.
First, navigate to System->License Keys and add the license key for ‘Metadata Feeds’ if this has not
already been installed. Next, under System->Configuration Files, find the Metadata Feeds configuration
file and paste in the ‘Generic CAD API’ Configuration file provided when the feature was purchased. This
will enable the feature with the default settings. See sections below about modifying default settings if
required for your usage.



6. NEXLOG GENERIC CAD API

6.3. Transport Mechanism

The Generic CAD API allows ASCII formatted commands to be sent to the recorder in predefined
formats to accomplish various tasks related to recorder metadata. By default, the Generic CAD API will
expect these commands to be sent to the recorder as UDP on port 5000, but both of these settings are
configurable. When using UDP, the recorder will expect to receive one full ASCII command per UDP
datagram. To alter which port the recorder will listen on for commands, look near the top of the
configuration file for a line which says

InputPort = 5000

This can be changed to any other available port that you wish the recorder to listen on for Generic CAD
API Messages. Instead of listening on a UDP port, it is also possible to configure the Generic CAD API to
listen on a TCP Port. To configure TCP Mode, change the line near the top of the configuration file from:

InputType = UDP
To:
InputType = TCP

The recorder will now listen on the configured port number as a TCP port instead of UDP. Unlike UDP,
which is stateful, and each inbound UDP message can come from a different source, TCP is a stateful,
connection based protocol. The Generic CAD APl when configured in TCP mode will expect a single TCP
connection to be made from the CAD system to its configured TCP port, and will expect ASCIl commands
to be sent to this TCP port. It is the CAD system’s responsibility to maintain the TCP connection,
detecting when it is no longer connected, and reconnecting as needed. Multiple simultaneous TCP
connections are not supported. Connecting an additional TCP connection will automatically disconnect
any established connection.

In addition to TCP and UDP, the Generic CAD API can be configured to listen on a serial port instead of
on a TCP or UDP port. To configure this mode, change the line near the top of the configuration file that
says:

InputType = UDP



6. NEXLOG GENERIC CAD API

To:
InputType = Serial

And add in the additional required configuration lines immediately below. For example:

SerialType n81l
SerialBaud 9600
SerialDevice = /dev/ttySO

The SerialType configuration setting defined the parity, number of data bits, and number of stop bits for
the serial connection, for example, N81, or E72. The SerialBaud configuration setting defines the baud
rate to be used on the serial connection. Finally, the SerialDevice configuration setting tells the recorder
which serial port to connect to the Generic CAD API for receiving commands. A standard NexLog has two
serial ports, which are referenced as /dev/ttySO and /dev/ttyS1. If additional serial port add-in cards have
been purchased and installed into the NexLog, then they can be accessed as /dev/ttyS2, /dev/ttyS3, etc.

6.4. Verification of Data Received

Generic CAD API canreceive data over TCP, UDP, or Serial, but regardless of the transport mechanism
used, the format of the data conveyed is identical. The Data format is ASCI|I text, so the commands are
human readable over the transport layer. Each command is sent followed by a newline (‘n’) character, so
each command is a separate line. Commands will have varying number of parameters, and the meaning of
those parameters differs depending on the command, but the command format is always the same. The
example below is a 4 parameter command; though various numbers of parameters are possible
depending on the command.

<Command:Paraml:Param2:Param3:Param4>\n

Commands open with a left bracket character ('<’), and close with a right bracket character (‘>’). The
command itself and all its parameters are separated by colon (") characters. If a parameter needs to
contain aright bracket (>’) or a colon (:) character, these are reserved characters and need to be escaped
as to not interfere with processing. To insert these characters into parameters escape them as \COLON
and \RIGHTBRACKET (a backslash followed by the actual name of the character all in uppercase).

Upon receiving acommand, the API will attempt to parse it. If the format matches a valid command, the
API will respond with the ASCI| text



6. NEXLOG GENERIC CAD API

OK\n

If the command is not successfully parsed, no response will be sent. Note that the OK response verifies
only that the command was successfully parsed and passed on to the rest of the system. It does not
guarantee that the command actually had its desired effect. For example, if acommand tells the system to
apply data to a given metadata field, and that metadata field does not exist, the command will parse
successfully and return OK, but its actual result will be to raise an alert on the recorder warning about the
missing metadata field.

6.5. APl Command Data Format

In the NexLog Configuration Manager, you can verify what data has been received by the Generic CAD
API by going to Utilities -> Metadata Feeds and selecting Generic_CAD_API and clicking View Feed.
From this screen, you can View Input Logs for the Generic_CAD_API metadata feed which will show all
recent data received by the configured input port (whether UDP, TCP, or Serial). This can be useful to
verify that the datais being properly sent and received. It is also possible from this screen to View
Processing Logs, which shows the received messages color coded and describes how they are being
extracted and processed by the Generic CAD API. A command is displayed in the Processing Logs once it
is successfully identified and parsed by the API, whereas the Input Logs show every character received,
regardless of proper formatting, etc.

6.6. Physical Channel Commands

There will be multiple groups of commands described in this document. The first group to be handled are
the commands that reference a physical channel on the recorder. Every NexLog recorder has a certain
number of channels installed and configured, up to a maximum of 255 channels. For example, inserting a
24 channel Analog board into the recorder will add 24 channels to the recorder, each of which is
hardware defined by two pins on the analog card; when audio is sent to those pins, they record on the
hard coded corresponding recorder channel. In addition to Analog, Digital PBX, and T1/E 1 tapping
boards, channels can belong to ‘Virtual’ boards that are installed and licensed, such as ScreenAgent
channels, and Vol P channels. Though there are not physical pins and wires in these configurations, each
channel number is still hard coded and defined by a single input, for example a particular IP and Port, or a
particular PC Workstation. Physical channel commands allow metadata to be assigned to the current call
recording on a known physical channel. Physical channels are the simplest available commands for
attaching metadata to recordings and are most useful when the physical recording channel has a one to
one correspondence with the CAD system. For example, if individual channels on the recorder are



6. NEXLOG GENERIC CAD API

recording audio feeds from individual CAD positions and the CAD system sends per-position metadata,
or when individual recorder channels are recording audio feeds from individual Trunks, and the CAD
system sends per-trunk metadata. When this correspondence does not exist due to the way the recorder
and CAD system are configured and connecting, physical channel commands cannot be used, and other
types of command described later in this document should be used instead.

Physical Channel Commands have the following format:

<Command:ChannelNumber:Fieldl:Valuel:Field2:Value2:Field3:Value3: ..... Fi
eld8:Value8>

Though they can have less than 8 Field/Value fields if less metadata needs to be attached to the call.
The Following Physical Channel Commands are available:

ATTACH: Attach the given metadata to the current recording call on the physical channel. If No call is
currently recording, attach it to the most recent call to complete on the channel. Note that if a call record
already has a value in a given field that is included in the command, that field will be overwritten with the
new value.

ATTACH_OR_CACHE: Attach the given metadata to the current recording call on the physical channel. If
No call is currently recording, attach it to next call to start on the channel

BREAK_ATTACH: If a call was started usinga CAD APl START command and is recording then it will
trigger a call break, start a new call, and attach metadata to this new call. If a call was started without using
the CAD API START command (example: triggered by calls based on the different detect type of the
channel) and is recording, then it will not trigger a call break but attach the metadata to the current call. If
no call is currently recording on the channel then BREAK_ATTACH will start recording a new call and
attach the specified metadata to this new call.

BREAK_ATTACH_OR_CACHE: If no call is currently recording on the channel, it will attach the metadata
to the next call to start on the channel, otherwise it will perform the same action as BREAK_ATTACH.

Under normal circumstances, the recorder will start and stop recordings based on its own internally
configured criteria, for example, VOX levels and hold times, or Tip/Ring voltages, and the CAD API will be
used only to attach metadata to existing calls (and possibly break a call into multiple pieces so different
metadata can be attached to different segments). It is possible, however, with certain recorder
configurations, for the Generic CAD API to be used to control the starting and stopping of recording on
the physical channel. These commands are only available for physical channels. Note that in for these
commands to work on a given channel, the channel itself must be configured to allow scripted control and



6. NEXLOG GENERIC CAD API

not to use the available internal mechanisms to control recording. The following additional call control
commands are available for physical channels:

START: If No call is in progress on the physical channel, begin recording, and attach the metadata givenin
the command to the new call. If acall is already in progress, attach the metadata to it

START_OR_BREAK: If No call is in progress on the physical channel, being recoding and attach the
metadata given in the command to the new call. If acall is already in progress, stop it, start a new call, and
attach the metadata to it

STOP: If no call is in progress, attach the metadata to the most recent call on the channel, otherwise stop
recording immediately and attach the given metadata to the recently stopped call.

In addition to attaching metadata to call records and starting, stopping call records, there is one additional
command which creates a standalone call record with no audio to store an event. This command could be
used, for example, to insert a received text message into the recorder, or to insert a note about the
console position going off line, or a new agent logging into it, etc.

EVENT: Regardless of whether or not a call is present on the channel, create a call record with no
duration or audio and place it at the current time on the physical channel. This command is especially
useful with the ANNOTATION metadata field to create standalone annotation pins on the timeline. For
example, an Event could be given an annotation text, ChannelName, Caller_ID, and CallType of ‘TEXT' for
atext message arriving at the CAD position. Unlike the other physical channel messages, this one is useful
even if there is no one-to-one physical channel mapping, the messages can be hard coded to a specific
physical channel such as ‘1’, and then use the ChannelName metadata field to make sure it appears where
you want it to. Since there is no actual audio, the physical channel is not important in most cases.

While the ChannelNumber given in the physical channel commands can be the actual physical channel
number (for example 12 for the 12th channel on the recorder), using this mechanism requires the CAD
system to know which position or trunk, etc., is wired to which physical channel number on the recorder,
which would require the CAD side of the integration to be altered per-site to put in the matching
recorder channel numbers for the position, trunk, etc. To work around this issue, the Generic CAD API
allows a mapping table to be configured on the recorder from a given value to a channel. For example, the
CAD system could send as the channel ‘POSITION 1’ 0or ‘555-1212’ or ‘911 Trunk 12’ and when the
Generic CAD API configuration file is loaded onto the recorder, it can be altered to contain the mappings
from these tags to actual physical channel numbers. Again, it is important to note, this can only be done
when there is a one-to-one correspondence between the tag and a physical channel, e.g. ‘POSITION 1’ is
Channel 43. If CAD commands are being sent for a given position, but the recorder is recording Trunks,
there is not a defined relationship that ‘Position 1’ is Channel X, calls for position 1 could record on any



6. NEXLOG GENERIC CAD API

channel, and in this configuration, physical channel commands cannot be used, and more advanced
commands described in sections below must be used instead.

To configure a mapping from CAD supplied tags to physical channel numbers, edit the Generic CAD API
configuration file loaded onto the recorder. Look for the section:

[ChannelMap]

MapType = Lookup

Map = 1 <- Examplel
Mapl = 2 <- Example2

The supplied example mappings would map the tag Example1 to channel 1 and Example2 to channel 2.
Regardless of the ChannelMap, if an integer from 1-255 is sent as the channel number in a Generic CAD
APl command, then the corresponding physical channel ID will automatically be used. The mapping only
needs to be supplied if alternative tags are to be used. The two example entries can be modified to suit
your purposes, and additional Map entries can be added, e.g. Map2 = 6<-Position 1 would add a new
mapping from the tag ‘Position 1’ to channel 6. Note that each Map value should be unique and in
ascending order without any gaps, Map, Map1, Map2, Map3, etc. but otherwise the number appended to
the word map have no semantic meaning. The format is MapX = <channel ID> <- <Tag Name>

After the command and the physical channel number come between zero and eight Field/Value pairs of
metadata to attach to the call. (Though zero would only be useful in the case of a START or STOP
command, as attaching no metadata to a call and taking no action would not do anything, and not be a
command worth sending). The field should be the name of a recorder metadata field, and the value is the
value you wish to place in that metadata field for the call record referenced by the command. Generic
CAD API commands can reference any metadata field that has been added to the recorder via the
NexLog Configuration Manager, including default fields that are shipped with every recorder, such as
Caller_ID, CallType, and DTMF. In addition to filling in existing metadata fields, Generic CAD API based
integrations can utilize arbitrarily named additional metadata fields defined by the CAD integrator / API
user. It isrecommended that these metadata fields be added to the NexLog recorder at the time the
Generic CAD API configuration file is loaded onto the recorder. If the CAD system attempts to apply
metadata to a field that has not been created on the recorder, the metadata will not be attached, and an
alert will be raised on the recorder about the mismatch between configured fields and the fields expected
by the integration.

The following built-in and default metadata fields have special meaning:

CHANNELNAME: The name of each physical channel can be configured in the NexLog Configuration
Manager. Each call on that physical channel will default to the CHANNELNAME of the physical channel it
was recorded on. However, using the Generic CAD API, the CHANNELNAME can be modified from this



6. NEXLOG GENERIC CAD API

default to provide an alternate name. For example, it might be desired that while the physical connection
is ‘Position 1’ to set the CHANNELNAME for each call to ‘Position 1 - Admin’ or ‘Position 1 - Emergency’
if the position takes both administrative and 911 calls. The CHANNELNAME is the primary way that calls
are searched by users of the NexLog system and also the names available in the browse tree in the
Browse tab in MediaWorks Plus.

CALLER_ID: This field is used, not only for actual caller ID, but is generally the primary ‘Calling Party’
field on NexLog and is a default field in MediaWorks Plus and the Front Panel.

DTMF: This field is used not only for parsed DTMF tones, but is generally the primary ‘Called Party’ field
on NexLog and is a default field in MediaWorks Plus and the Front Panel.

CALLTYPE: The CALLTYPE of each physical channel can be configured in the NexLog Configuration
Manager. Each call on that physical channel will default to the CALLTYPE of the physical channel it was
recorded on. However, using the Generic CAD API, the CALLTYPE can be modified from this default to
provide an alternative CALLTYPE. For example, a channel might be configured to mark the call type as
‘PHONE’ or ‘POSITION;, but it may be desirable to mark calls as being of type ‘FIRE’ or type
‘EMERGENCY:'. CALLTYPE is configured to display an icon (if available) as opposed to the actual text in
MediaWorks Plus. The icon associated with a given text string is configured in the NexLog Configuration
Manager under Recording->Custom Fields. While any metadata field can be configured to use icons,
CALLTYPE is special in that not only do its icons appear in the CALLTYPE column in the call grid, but
there is an option in MediaWorks Plus to turn on CallType icons in the timeline, where the configured
icon is shown on top of the call record in the timeline as well.

ANNOTATIONS: Annotations are snippets of text that occur at a specific time during the call. Unlike
other metadata fields, where a subsequent update will overwrite old values, a single call record can have
multiple annotations. MediaWorks Plus will show annotations as pins on calls where the text they contain
can be seen on mouse-over. The mouse-over effect will also happen automatically during playback to
create an annotation on the call, enter the text you wish to annotate onto the call into this field

ANNOTATION_TYPE: Only valid if the command also has ANNOTATIONS. If ANNOTATIONS is
present,and ANNOTATION_TYPE is not, ANNOTATIONS default to type SYSTEM which means they
display as a gear icon on the MediaWorks Plus timeline, and are not user editable/deletable. If
ANNOTATION_TYPE is set to USER, then they appear as a pin in the timeline and are editable / deletable
by users. These are currently the only valid annotation types, though more may be added in future
NexLog firmware release.

ANNOTATION_TIME: Only valid if the command also has ANNOTATIONS. If ANNOTATIONS is present
and ANNOTATIONS_TIME is not, the ANNOTATION time defaults to the current recorder time when



6. NEXLOG GENERIC CAD API

the command was received. If present ANNOTATION_TIME should contain a UTC timestamp, in the
format of number of milliseconds since UNIX Epoch.

LOCATION: This metadata field is only available if a Geolocation license is installed on the recorder. The
LOCATION metadata field must be populated with data in a specific format. The valid format is
(latitude,longitude) including the parenthesis. The LOCATION metadata field represents the GPS
coordinates from which the call originates. If present, and the necessary licenses are loaded on the
recorder, this allow the recorder to display the call as a pin on a map, and also allows searching for calls
based on location (The user can draw a shape on the map to find calls that occurred inside of it).

In addition to these fields, any additional desired metadata fields can be created and used. Don’t forget to
escape ‘>’ and .’ characters in values as described above. Up to eight key/value pairs can be provided, or
they can be left out. If left out, leave them blank, but still provide the correct number of colons in the
command. Note also that while most fields are created in the Configuration Manager as Text fields,
meaning they can contain any ASCII (or UTF8) data, it is possible to create integer only fields, where if
non integer data is applied to them, the insert will fail and the recorder will raise an alert.

Examples:

<ATTACH:43:CALLTYPE:FIRE:CALLER ID:(201)-555-1212:L0CATION: (40.8529,-74.04
21)::: 00 i>\n

Would attach metadata to the current call on channel 43 (or most recent call on 43 if one is not currently

in progress.) CallType, Caller_ID, and Location fields are set. Note the extra colons for unused metadata
fields:

<ATTACH OR CACHE:Position 1:CALLER ID:(201)-551-1212:INCIDENT ID:
160628-43::::::::::::>\n

Would attach metadata to the current call on the channel mapped to the tag ‘Position_1’ in the Generic
CAD API configuration file, or cache it for the next call to start on the channel if no call is currently in
progress. The metadata attached will be a Caller_ID, and an INCIDENT_ID field from the CAD system
which is not a standard NexLog field, but has been added to the recorder using the Configuration Manager.

One additional Physical Channel Based Command is available:

ATTACH_AT_TIME: Attaches the metadata to the call that was in progress at a given time on the given
physical channel. The first parameter is the physical channel ID or a tagthat is configured to map to a



E 6. NEXLOG GENERIC CAD API

physical channel id in the Generic CAD API configuration file on the recorder. The second parameter is
the time, in seconds since UNIX Epoch (UTC). After that are up to eight field/value pairs to set.

<ATTACH AT TIME:22:1467909534:INCIDENT ID:2016-444::::::::::::::>

Would set the INCIDENT_ID metadata field to 2016-444 for the call that was in progress at
1467909534 UNIX Epoch time (whichis July 7,2016 at 16:38:54 UTC) on physical channel 22. If no
such call exists, the metadata is attached to the most recent call to end before the given time on the
physical channel.

6.7. Non-Physical Channel Commands

Non-physical channel commands differ from physical channel commands in that they do not include a
physical channel number (or physical channel mapping tag) and cannot perform actions on the call (such
as call breaks, starting, or stopping calls), only attach metadata. They work, not by specifying ‘The Current
Call on Channel X, to act upon, but by specifying some condition that must be met by a call in order for
the metadata to be attached for it. For example, a command could say “Attach this metadata to all calls that
have Caller_ID=(201)-555-1212" At the point the command is run, any call that currently meets the
given criteria will have the metadata attached. Note that unlike physical channel commands, a non-
physical channel command can act on more than one call record if more than one call record meets the
given criteria. Non-physical channel commands will only affect calls that are no more than 24 hours old.
Any call less than 24 hours old that matches the given criteria will be affected.

Non-physical channel commands can be used to attach data to call records based on the metadata they
already have attached to them, via other interfaces, including ANI/ALI, SIP Signaling, MF Tones, etc. The
call must already have the matching values at the point in time when the command is sent. There are two
variants of the non-physical channel command:

ATTACH_ON_MATCH: Attaches the metadata to all calls from the past 24 hours that match the given
criteria

ATTACH_ON_MATCH_1: Attaches the metadata to only the call that matches the given criteria with the
most recent start time (must be within 24 hours).

The first two parameters for a non-physical channel command are the metadata field and value to match
on, the rest (up to eight) are the metadata to attach, e.g.:



6. NEXLOG GENERIC CAD API

<ATTACH ON MATCH 1:CALLER ID:2015551212:INCIDENT ID:2016-4432:::::::::::::

>

Would set the INCIDENT_ID metadata field to 2016-4432 to the most recent call on the recorder that
has the CALLER_ID metadata field set to 2015551212. The value to match must be exact, and is case
sensitive.

One additional command is available:

ATTACH_ON_MATCH_AT_TIME: Attaches the metadata to the call that was in progress at a given time
that matches the given field/value. The first parameter is the time, in seconds since Unix Epoch (UTC).
The second and third parameters are the field and value to match, and after that are up to 8 field/value
pairs to set. This command is most useful for attaching to a call on a given ChannelName at a given time
regardless of the physical channel. For example:

<ATTACH ON _MATCH AT TIME:1467909534:CHANNELNAME:Position12:INCIDENT ID:201

Would set the INCIDENT_ID metadata field to 2016-444 for the call record that was in progress at
1467909534 UNIX Epoch time (whichis July 7,2016 at 16:38:54 UTC) which also had the
ChannelName set to ‘Position12’, regardless of what physical channel the call was recorded on. If no such
call exists, the metadata will be attached to the most recent call to complete before the given time that
meets the given criteria.

6.8. Text Call Commands

Text Call commands can be used to attach text messages to text call records. The following format applies
for both Physical and Non-Physical Channels:

<command: ChannelNumber: Sender’s Name: Text Body>

ATTACH_OR_CACHE_TEXT: Attach the given text body to the current recording text call on the physical
channel. If no text call is currently recording, attach it to the next text call to start on the channel. This
optionis intended for use with analog channels. Use the START commands to start recording calls on
analog channel to create a call for this text record. Either the STOP command or VOX timeout can be
used to end text calls for analog.



6. NEXLOG GENERIC CAD API

ATTACH_OR_START_TEXT: Attach the given text body to the current recording text call record on a non-
physical channel. If no text call is currently recording, start a text call on the given channel and attach it.
This command is intended for use with RTP channels. For RTP, there is no stop command and the RTT
Timeout set for the channel is what will be used instead.

For example, for analog channels:
<START:42:::::::i:iiiiiiiii>
<ATTACH OR CACHE TEXT:42:A:What are you doing now?>

<ATTACH OR CACHE TEXT:42:B:I'm watching TV.>
<STOP:42::::::i:niii>

And for RTP:

<ATTACH _OR START TEXT:57:A:What are you doing now?>
<ATTACH OR START TEXT:57:B:I'm watching TV.>

6.9. Agent Login/Workstation Tagging Commands

Agent_(Login/Logout/Info) Commands can be used to log an agent into the Client Activity Table to enable
workstation tagging on specified channels. Each of these actions have the following format:

<AgentAction:AgentId:ChannelNo:ClientAddress:Fieldl:Valuel:Name2:Value2:..
Field8:Value8>

AGENT_LOGIN: Log the Agent into the Client Activity Table and attach the given metadata to the
specified channel.

AGENT_LOGOUT: Log the Agent out of the Client Activity Table.

AGENT_INFO: Change the metadata to be attached to the calls that start on the specified channel for an
agent already logged into the Client Activity Table.



7.REPORTING PROBLEMS

7.REPORTING PROBLEMS

Itis Eventide’s policy to work directly with dealers. Your dealer must report your problem to Eventide
with the following information in order to process the service/support request:

e Serial number(s) of the affected recorder(s).

e Software versions for the recorder(s).

e Severity of the issue, including a detailed description.

e Contact information (phone and email) for the dealer and on-site technician.

To contact Eventide customer service for support, call 201-641-1200 Option 6 followed by Option 2
(Communications/Recorders Division) or email service@eventidecommunications.com.


mailto:service%40eventidecommunications.com
mailto:service%40eventidecommunications.com
mailto:service%40eventidecommunications.com

| |
B “i‘ | '\ “ il I (4 |




	Table Of Contents
	NEXLOG APPLICATION PROGRAMING INTERFACES
	1. ACCESSING MEDIA VIA HTTP(S)
	1.1. URL Parameters - General
	1.2. URL parameters - RTP specific
	1.3. URL Examples
	1.3.1. Retrieve media with a matching value for a metadata field
	1.3.2. Retrieve media by matching an Eventide CallGuid
	1.3.3. Retrieve media by matching an Eventide ID
	1.3.4. Retrieve media via complex date and channel based criteria
	1.3.5. Retrieve media packaged as RTP
	1.3.5.1. Streaming notes
	1.3.5.2. Example session to create a dataset and play from it



	2. ASSOCIATING METADATA VIA NEXLOG METADATA FEEDS
	2.1. Metadata Feeds
	2.2. Metadata Commands
	2.2.1. Start
	2.2.2. Stop
	2.2.3. Break
	2.2.4. Delete
	2.2.5. Start (with Metadata)
	2.2.6. Stop (with Metadata)
	2.2.7. Break_Then_Apply (Metadata)
	2.2.8. None
	2.2.9. Cache

	2.3. Metadata Notes

	3. OPEN DATABASE CONNECTIVITY (ODBC)
	3.1. Overview
	3.2. Installing the ODBC Driver
	3.3. Adding a User with Database Access Permissions
	3.4. Establishing an ODBC Database Connection
	3.5. Setting up a Connection using Microsoft Excel
	3.5.1. V_RECORD
	3.5.2. V_ALERTHISTORY
	3.5.3. V_DAILYSTATISTICS


	4. ACCESSING EVENTIDE NEXLOG VIA SOAP
	4.1. Overview
	4.2. Setting up Visual Studio 2012
	4.3. Source Files
	4.4. Expectations
	4.5. Cookie Handling
	4.6. Logging In
	4.7. Retrieving Channel Names
	4.8. Retrieving Call Data
	4.9. Applying Metadata
	4.10. Call Breaks
	4.11. Channel Recording Control
	4.12. Squashing a Channel
	4.13. Supporting Information

	5. INTERFACING TO NEXLOG’S REST API
	5.1. Authentication
	5.1.1. Successful Authentication Response
	5.1.2. Failed Authentication Response

	5.2. Retrieving Recordings
	5.3. Associating Metadata to a Record
	5.4. Example Bash Script

	6. NEXLOG GENERIC CAD API
	6.1. Overview
	6.2. Initial Setup
	6.3. Transport Mechanism
	6.4. Verification of Data Received
	6.5. API Command Data Format
	6.6. Physical Channel Commands
	6.7. Non-Physical Channel Commands
	6.8. Text Call Commands
	6.9. Agent Login/Workstation Tagging Commands

	7. REPORTING PROBLEMS

